Eukaryotic Cytoskeleton In Cell Division

Cell division is a highly regulated process requiring the interplay of physical and chemical cues. The cytoskeleton is a central player, serving as energy source for dramatic movements requiring complex mechano-chemistry, as well as acting as a scaffold that facilitates molecular encounters at the right time and place within the cell. We study two cytoskeletal systems, microtubules (MTs) and septin filaments, that play critical roles in mitosis and cytokinesis, respectively. Importantly, their self-assembly and interactions can serve both as input or readout in checkpoint processes that regulate critical and often irreversible steps in cell division progression.

Structural Basis of Microtubule Dynamic Instability

In our microtubule cytoskeleton studies we are interested in defining the conformational landscape of tubulin as defined by its nucleotide and assembly states, in order to obtain detail mechanistic understanding of the process of microtubule dynamic instability ... read more


Microtubule-Kinetochore Interface

In the cell the dynamics of microtubules are regulated and made use of by their interaction with different factors. Of special interest is the coupling of microtubules to the kinetochore, a process where microtubule dynamics reaches its "climax". We pursue a mechanistic understanding of the molecular interactions governing the regulated, dynamic attachment of kinetochores to microtubules that underlies the accurate segregation of chromosomes during mitosis ... read more


Septins Structure And Assembly

Septins are conserved GTases defining a new type of cytoskeletal filaments essential in cytokinesis and other membrane-remodeling processes. We are studying the yeast septins to define the organization of different septin assembly units, their polymerization and their regulation ... read more



Recent publications

Yuan et al. <a href=http://www.nature.com/nature/journal/v533/n7603/full/nature17970.html\> Near-atomic resolution visualization of human transcription promoter opening</a><i> Nature</i>, 2016 May 11; Epub ahead of print Louder et al. <a href=http://www.ncbi.nlm.nih.gov/pubmed/27007846> Structure of promoter-bound TFIID and model of human pre-initiation complex assembly</a><i> Nature</i>, 2016 Mar 23;531(7596):604-9 Jiang and Taylor et al. <a href=http://www.ncbi.nlm.nih.gov/pubmed/26841432> Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.</a> <i>Science</i>, Jan 2016; Epub ahead of print Nogales and Zhang<a href=http://www.sciencedirect.com/science/article/pii/S0959440X16000038> Visualizing microtubule structural transitions and interactions with associated proteins</a> <i>COSB</i>, April 2016; <b>37</b>, 90-96  Zhang et al. <a href=http://www.sciencedirect.com/science/article/pii/S0092867415008491> Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins</a><i> Cell 2015 Aug 13;162(4):849-59

Eva Nogales has been elected to the American Academy of Arts and Sciences

Basil Greber and Kelly Nguyen have won the 2016 RNA Society Scaringe Award

Eva Nogales has won the 2016 Mildred Cohn Award in biological chemistry from the American Society for Biochemistry and Molecular Biology

Harvey Lecture by Eva Nogales